# 9 - Segmentation

Prof Peter YK Cheung

Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE4\_DVS/ E-mail: p.cheung@imperial.ac.uk

## What is Segmentation?

- Segmentation is the division of an image into spatial region.
- This is achieved by grouping pixels with similar visual characteristics into regions.
- If *R* represent the entire spatial region, and  $R_i = R_i$  represents two separate regions *i* and *j*, image segmentation is def  $\bigcup_{i=1}^{n} R_i = R_i$  is following five conditions:
  - a) Every pixel must be in the region *R*:
  - *b)*  $R_i$  is a region where pixels are connected (i.e. in connected set).
  - c) Region  $R_i$  must be disjoint:  $R_i \cap R_j = \emptyset$  for all i and  $j, i \neq j$ .
  - d) All pixels must share some common properties  $Q: Q(R_i) = TRUE$  for all pixels in  $R_i$ .
  - e) Two adjacent regions  $R_i$  and  $R_j$  must be different in some properties Q.

#### **Segmentation based on discontinuity**



#### **Segmentation using Thresholding**



#### Histogram can be a guide



- The left image is to be segmented.
- Histogram is bimodal the background and the object occupying two distinct regions.
- Putting the threshold between the two "hills" will easily segment the image.

#### What if it is not bimodal?



(C) Thresholded 140





#### **Three Different Type of Images & Histograms**



#### **Otsu's method to find threshold**

Threshold = 123



Threshold = 90

Threshold = 59









#### Variable Thresholding based on local statistics

• Threshold  $T_{xy} = a\sigma_{xy} + bm_{xy}$ , where  $\sigma_{xy}$  is local standard deviation,  $m_{xy}$  is local mean intensity, and a, b are positive constants.



## **Segmentation using Watershed Transform (1)**

- A watershed is the ridge that divides areas drained by different river systems.
- A catchment basin is the geographical area draining into a river or reservoir.
- The segmented regions are the basins that catch the rainwater as water rises.
- The watershed ridge line partition the image into regions thus achieving segmentation.





### **Segmentation using Watershed Transform (2)**



#### **Segmentation based on clustering**

- Visual characteristics: Intensity, colour, position, texture, motion, depth
- Each pixel as feature vector: [R, G, B, x, y .....]



### **Pixel Similarity Measure**

- Let  $f_i$  and  $f_j$  be the feature vector for pixels *i* and *j* respectively.
- The Euclidian distance between  $f_i$  and  $f_j$  is given by:

$$d(f_i, f_j) = \sqrt{\sum_k (f_{ik} - f_{jk})^2}$$

• Smaller the value of d, the greater the similarity.



#### **Segmentation by Clustering [R G B] vectors**

- Group together those pixels that have high similarity in colour (i.e. short d(r, g, b) distances) to form clusters.
- Assign a "mean" colour to each cluster.
- Now we have a segmented image by colour.



## **Segmentation by k-Means Clustering (1)**

- Segment image into k clusters using pixel characteristics.
  Assume k = 3
- Step 1: Generate 3 random initial means (centroids) in feature space.
- Step 2: Cluster each pixel to the mean with shortest distance to form 3 clusters as shown.



## **Segmentation by 3-Means Clustering (2)**

- Step 3: Recompute the mean of each cluster
- Step 4: Repeat steps 2 and 3 until mean (or centroid) values change below a small margin. Then segmentation is completed and converges to a final solution.
- Needs to determine k. Also need to select initial values.
- Best initial values: Perform k-means clustering on a subset of pixels, and use that solution as initial values.



#### Example of k-Means Clustering (k = 16)

![](_page_16_Picture_1.jpeg)

k = 16, {R, G, B} space only

![](_page_16_Figure_3.jpeg)

![](_page_16_Picture_4.jpeg)

k = 16, {R, G, B, x, y} space

## **Idea behind Mean Shift Clustering**

![](_page_17_Figure_1.jpeg)

- Mean Shift determines how many clusters automatically depending on image.
- Each hill of the distribution represents a cluster.
- Each peak of the hill represents "mean" or "centroid" of a cluster.
- Each pixel climbs the steepest hill within its neighbourhood.
- Pixel takes on the the peak of the hill in its cluster.

## **Mean Shift Hill Climbing**

![](_page_18_Figure_1.jpeg)

- Consider one pixel (red) in feature space. Form a window centred at pixel with with w.
- Calculate the weighted means of feature parameters to find a new location in green.
- Shift the original pixel in feature space to the new mean (hence name "mean shift").
- Keep doing this until there is no shift we are done for this pixel!

## **Mean Shift Hill Climbing**

![](_page_19_Figure_1.jpeg)

- Therefore, the original pixel (in red), successfully climb the hill to the MODE (or peak).
- Other pixels nearby also eventually reach the same peak.
- These are ALL belonging the same cluster. They are then assigned the same feature vector as that of the peak.

#### **Example of Mean Shift Clustering**

![](_page_20_Picture_1.jpeg)

![](_page_20_Figure_2.jpeg)